Electromechanics of paced left ventricle simulated by straightforward mathematical model: comparison with experiments.
نویسندگان
چکیده
Intraventricular synchrony of cardiac activation is important for efficient pump function. Ventricular pacing restores the beating frequency but induces more asynchronous depolarization and more inhomogeneous contraction than in the normal heart. We investigated whether the increased inhomogeneity in the left ventricle can be described by a relatively simple mathematical model of cardiac electromechanics, containing normal mechanical and impulse conduction properties. Simulations of a normal heartbeat and of pacing at the right ventricular apex (RVA) were performed. All properties in the two simulations were equal, except for the depolarization sequence. Simulation results of RVA pacing on local depolarization time and systolic midwall circumferential strain were compared with those measured in dogs, using an epicardial sock electrode and MRI tagging, respectively. We used the same methods for data processing for simulation and experiment. Model and experiment agreed in the following aspects. 1) Ventricular pacing decreased systolic pressure and ejection fraction relative to natural sinus rhythm. 2) Shortening during ejection and stroke work declined in early depolarized regions and increased in late depolarized regions. 3) The relation between epicardial depolarization time and systolic midwall circumferential strain was linear and similar for the simulation (slope = -3.80 +/- 0.28 s(-1), R2 = 0.87) and the experiments [slopes for 3 animals -2.62 +/- 0.43 s(-1) (R2 = 0.59), -2.97 +/- 0.38 s(-1) (R2 = 0.69), and -4.44 +/- 0.51 s(-1) (R2 = 0.76)]. We conclude that our model of electromechanics is suitable to simulate ventricular pacing and that the apparently complex events observed during pacing are caused by well-known basic physiological processes.
منابع مشابه
Electromechanics of the paced left ventricle simulated by a straightforward mathematical model : comparison with experiments
1 Eindhoven University of Technology, Department of Biomedical Engineering. P.O.Box 513, 5600 MB Eindhoven, The Netherlands 2 National Institutes of Health, Laboratory of Cardiac Energetics, NHLBI. 10 Center Drive, Bethesda, Maryland 20892, USA 3 Maastricht University, Department of Physiology. P.O.Box 616, 6200 MD Maastricht, The Netherlands 4 Medtronic Bakken Research Center. Department of le...
متن کاملMechanisms of transmurally varying myocyte electromechanics in an integrated computational model
The mechanical properties of myocardium vary across the transmural aspect of the left ventricular wall. Some of these functional heterogeneities may be related to differences in excitation-contraction coupling characteristics that have been observed in cells isolated from the epicardial, mid-myocardial and endocardial regions of the left ventricle of many species, including canine. Integrative ...
متن کاملIntra- and interventricular asynchrony of electromechanics in the ventricularly paced heart
The degree of restoration of pump function by ventricular pacing depends on the pacing site and timing of pacing. Numerical models of cardiac electromechanics could be used to investigate the relation between the ventricular pacing site and timing on the one side, and pump function on the other. In patient-specific models, these numerical models could be used to optimize location and timing for...
متن کاملVentricular arrhythmias. A guide to their localisation.
An electrocardiographic atlas of ventricular tachycardias was produced by pacing 27 epicardial sections of the heart and the mitral papillary muscles to simulate focal ventricular arrhythmias and simultaneously recording their 12 lead electrocardiographic appearances. One hundred and twenty nine patients undergoing cardiac surgery were studied. In five patients all 27 epicardial sites were pace...
متن کاملA new multi-objective mathematical model for a Citrus supply chain network design: Metaheuristic algorithms
Nowadays, the citrus supply chain has been motivated by both industrial practitioners and researchers due to several real-world applications. This study considers a four-echelon citrus supply chain, consisting of gardeners, distribution centers, citrus storage, and fruit market. A Mixed Integer Non-Linear Programming (MINLP) model is formulated, which seeks to minimize the total cost and maximi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 289 5 شماره
صفحات -
تاریخ انتشار 2005